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Abstract 

For the calculation of the section modulus and the 

bending inertia of foils, Besnard [1] and Brooks [2] 

have provided simple approximations by representing 

the foil cross-section by a rectangular shape. This 

involves using correction factors (for chord and 

thickness) that are specific for a given foil. In this paper 

a method is presented to calculate accurate and 

specific  correction factors for any foil shape when the 

Besnard/Brooks  approximations do not suffice 

anymore. The principle is to calculate the bending 

inertia using a numerical scheme (once). From there 

on, the  correction factors can be derived. 

This is illustrated for the ClarkY foil resulting in more 

accurate equations (solid):  

 

α (correction factor for chord) = 0,294 

β (correction factor for thickness =  1,224 

 

These factors lead to the following equations for the 

ClarkY foil: 

 

 

The equations for hollow foils are presented in this 

paper as well.  

The method has been validated with an ellipse and 

yielded an accuracy of more than 99%. It can be used 

for other foils and shapes like struts and beams. 

A quick reference guide with all the equations can be 

found in appendix 4. 

 

 
 

 

Introduction 

When calculating stress and deflection in wings, the 

section modulus and the bending inertia are required. 

When deflection is calculated numerically and the foil 

is tapered, these values have to be calculated 

numerous times as the chord and thickness gradually 

change along the span. If the corresponding section 

modulus and bending inertia are calculated numerically 

as well, each step in the wing deflection calculation 

involves a large amount of interrelated numerical 

calculations.  

 

These calculations can be simplified by representing 

this cross-section of the foil by a rectangular shape 

(corrected for chord and thickness), although this can 

introduce errors. 

 

Besnard [1] and Brooks [2] have provided general 

approximations for the section modulus and bending 

inertia that can be used (for solid foils):  

 

Besnard  

 Section modulus  

   (1) 

 

Bending inertia 

   (2) 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Brooks 

Section modulus   

  (3) 

 Bending inertia 

   (4) 

 

Where 

  C= chord   [m] 

  T = thickness   [m] 

 

A comparison between the two sources for a ClarkY 

foil can be found in [3].  

 

The principle is to substitute the cross-section of the 

foil by a rectangular shape, corrected for chord and 

thickness. Below, the principle of the Besnard / Brooks 

approximation for a ClarkY foil is presented. 

 
The difference between the two sources is that 

Besnard (upper) corrects the chord and thickness, 

whereas Brooks (lower) merely corrects the chord, 

yielding different factors in the equations 1 to 4 below. 

It isn’t hard to imagine that these approximations 

become less accurate for specific shapes as can be 

seen below. 

 
The factors in the equations (0,0903; 0,0384; 0,075; 

0,0375) are partially1 correction factors and suitable for 

                                                             
1 Part of the factor consist of 1/6 or 1/12. 

general purposes although they were derived by 

Besnard and Brooks for specific foils. If one requires 

more accuracy, these factors need to be re-determined 

for the specific foil. 

A solution can be found, as will be explained in the 

next sections. 

 

The bending inertia of a foil section can be calculated 

with a numerical scheme as well. As stated before, this 

is not very practical when performing numerical wing 

tip deflection calculations for tapered foils.  

The numerical method (in Excel) is a numerical 

integration over the cross section of the foil. It is more 

accurate than the general approximations presented 

by Brooks and Besnard, as it accounts for the unique 

shape of the cross-section.  

By performing a one-off numerical calculation for the 

specific foil cross-section, the relevant correction 

factors for the “simplified” equations can be derived 

from it.  

In this way, simple and yet accurate equations can be 

obtained and can be used in the wing tip deflection 

calculations for each interval and thus simplifying the 

calculations. 

Note that the numerical method presented in this 

document is for the bending inertia only, but since 

bending inertia and section modulus are related, the 

rest can be derived. 

 

We will illustrate this method for a ClarkY foil, but the 

method is universal for all types and shapes of foils, 

even struts and beams. In Appendix 3, the method is 

validated for a beam with an elliptical cross-section 

and yields an accuracy of 99%. 

 

 

1. Bending Inertia – numerical method  
The basis is described by Drela [4] and it consists of 

three steps.  

First calculate the area of the cross-section, then 

calculate the neutral surface. Finally, from this, the 

bending inertia can be calculated. The paper uses 

three integrals (equations 1, 2, and 3). Without going 

into the details of the theory, an explanation of a 

numerical method is given here. 
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The basis is to make a table in Excel (see appendix 1). 

In this example, we will be using the coordinates of 

ClarkY as it is a very basic foil with a nice flat bottom.  

 

Column 1, 2 and 3 are the coordinates that specify the 

shape of the cross-section. Where x is the coordinate 

along the chord, and Zu and Zl represent the upper 

and lower curves.  

The first step is to calculate the area of the cross-

section. This is done by calculating the area beneath 

the upper curve and beneath the lower curve by 

means of the Trapezoidal Rule [5]. The total surface of 

the cross-section is obtained by the summation of 

column 4 subtracted by the summation of column 5. 

Next step is to calculate the neutral surface (z) in 

column 6. Calculate for each interval:  

€ 

1
2
Zu
2 − Zl

2[ ].Δx   (5) 

 

After summation of column 6, divide this total by the 

area previously calculated. Now the neutral surface (z) 

is obtained. 

Finally the bending inertia can be calculated. Calculate 

for each interval (column 7): 

€ 

1
3
(Zu − z)

3 − (Zl − z)
3[ ].Δx  (6) 

 

The sum of column 7 yields the bending inertia.    

 

For a solid ClarkY foil with a chord of 150 mm and a 

thickness of 20 mm, this leads to a bending inertia of 

53.821 mm4 (see appendix 1). 

With the figures obtained in this scheme, the section 

modulus can be calculated:  dividing the bending 

inertia by y = 4.398 mm3. 

 

 

2. Matching the equations  
The bending inertia equation with general correction 

factors for any foil is given by : 

 

   (7) 

 

 

Where  

α = correction factor chord  [-] 

β = correction factor thickness [-] 

C = chord    [m] 

  T= thickness   [m] 

 

Similar the section modulus equation is given by: 

   (8) 

 

Where the factors α and β are determined as (see 

appendix 2 on how these factors were derived): 

 

   (9)  

And 

   (10) 

 

With the output of the numerical scheme presented in 

appendix 1:   

 

  S =  4.398 mm3 

  I =  53.821 mm4 

  C =  150 mm 

  T =  20 mm 

 

One can calculate the correction factors:  

α = 0,294 

β = 1,224 

 

Resulting in a section modulus equation (ClarkY): 

 

 (11) 

 

And bending inertia equation (ClarkY): 

 

 (12) 
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3. Determine the factors for hollow foils  

The factors are identical for hollow foils, only the 

equations differ. Deriving the general equations for 

hollow foils has been explained in [3], therefore we will 

only present the results: 

 

For Section Modulus: 

€ 

S = 0,0733C T 2 − (T − 2Sk)
3

T
 
 
 

 
 
 

 (11) 

Where 

  C = outer chord  [m] 

T = outer thickness [m] 

  Sk = Skin Thickness [m] 

 

And Bending Inertia: 

€ 

I = 0,0449C T 3 − (T − 2Sk)3{ } (12) 

 

 

 

 

Important Notes to equations 11 & 12:  
Firstly, these two equations are only valid if the 

thickness of the skin is << chord. For the exact 

solutions, see [3].  

Secondly, the equations assume a constant skin 

thickness along the span of a tapered foil (independent 

of C and T). The skin at the root of the wing has the 

same dimension as at the tip. In some cases, the skin 

is scaled with the dimension of the chord, gradually 

decreasing towards the tip. In such case, different 

equations have to be used (see [3] for alternative 

equations). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

Brooks and Besnard provide simple and quick 

equations to calculate the section modulus and 

bending inertia of foils (both solid and hollow). These 

equations can be improved by a one-off numerical 

calculation of the bending inertia. 

The method can be used for other foils or shapes like 

struts and beams. 

 

For a solid ClarkY foil, the equations now become: 
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Appendix 1 Numerical calculation of bending inertia 

 

For the calculation of the section modulus and the bending inertia of foils, there are simple approximations by 

representing the foil cross-section by a rectangular shape. We will be following the numerical procedure as described in 

this paper, then we will derive all the relevant factors that lead to the rectangular cross-section approximations. 

 Wing Chord 150 mm       
 Thickness adjust + 14,0 %       
 Thickness = 20,00 mm       

 

 
           

           
           
           
           
           
           
           
 Coordinates Trapezoidal Neutr. S Inertia    
 1 2 3 4 5 6 7    
 x Zu Zl Area u Area l z I    
 [mm] [mm] [mm] [mm2] [mm2] [mm] [mm4]    

 0,00 5,98 5,98            
 0,75 8,38 4,79 5,38 4,04 17,7 6,6    
 1,50 9,49 3,93 6,70 3,27 28,0 15,3    
 2,63 10,51 3,16 11,25 3,99 56,5 44,3    
 3,75 11,28 2,51 12,26 3,19 68,0 70,6    
 5,63 12,39 2,05 22,25 4,29 140,4 179,0    
 7,50 13,50 1,50 24,21 3,32 168,4 270,8    
 11,25 15,13 0,72 53,69 4,17 428,2 936,5    
 15,00 16,41 0,26 59,13 1,83 504,8 1337,0    
 22,50 18,26 0,05 130,00 1,15 1249,9 4035,3    
 30,00 19,42 0,00 141,28 0,19 1414,1 5128,6    
 37,50 19,83 0,00 147,18 0,00 1474,5 5561,5    
 45,00 20,00 0,00 149,36 0,00 1500,0 5750,8    
 60,00 19,49 0,00 296,15 0,00 2848,1 10397,3    
 75,00 17,98 0,00 281,03 0,00 2425,4 7676,5    
 90,00 15,64 0,00 252,18 0,00 1834,8 4783,8    
 105,00 12,56 0,00 211,54 0,00 1183,9 2892,3    
 120,00 8,92 0,00 161,15 0,00 597,2 2346,7    
 135,00 4,79 0,00 102,82 0,00 171,8 2207,0    
 150,00 0,21 0,00 37,44 0,00 0,3 180,6    
    2105 29 16.112 53.821    
           
 area = 2.076 mm2 (sum Col. 4 - sum Col. 5)      
 z  = 7,8 mm  (sum Col. 6 divided by area)     
 I = 53.821 mm4 (sum Col. 7)      
 S = 4.398 mm3 (I divided by y)      
           
 α =  0,294   (= correction factor for chord)     
 β =  1,224   (= correction factor for thickness)    
 S = 0,073 CT^2   (= equation for section modulus)    
 I = 0,045 CT^3   (= equation for bending inertia)     
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Appendix 2 Determining the correction factors 
 

For the Besnard and Brooks type approximation, the chord and thickness of a foil is corrected. The chord needs to be 

corrected by α and the thickness is corrected with β. 

The section modulus equation and bending inertia equation should be solved simultaneously to determine correction 

factors α and β. 

   and    

 

Re-writing the first equation (S) results in:    

Substituting this into the next equation (I) yields:  
 

 

       
 

Then substituting β back in the equation for α: 
 

 

       

   
 

 

Using the values of the ClarkY foil above:  

     S =  4.398 mm3 

     I =  53.821 mm4 

     C =  150 mm 

     T =  20 mm 

 

     α = 0,294  

      β = 1,224 

 

To obtain accurate equations, it means that the chord should be corrected with 0,294 and the thickness should be 

corrected with 1,224. This results in the following equations for bending inertia and section modulus. 

 

  and    

 

 

The validity of this procedure is checked in the next appendix. 
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Appendix 3 Validation of the method 
 

To illustrate the validity of the method, we have taken a foil with C=75 mm and T=50mm (actually, its an ellipse of which 

the area, section modulus and bending inertia can be exactly determined).  

   

Now use the numerical method to determine the bending inertia, then solve α and β as explained in this paper.   
 

 
 
           

           
           
           
           
           
           
           
           
           
           
 Coordinates Trapezoidal Rule Neutr. S Inertia    
 1 2 3 4 5 6 7    

 x Zu Zl Area u Area l Z I    
 [mm] [mm] [mm] [mm2] [mm2] [mm] [mm4]    

 0,00 25,00 25,00            
 1,00 30,73 19,27 27,87 22,13 286,7 125,8    
 2,00 33,06 16,94 31,90 18,10 402,8 348,6    
 3,00 34,80 15,20 33,93 16,07 489,9 627,2    
 4,00 36,23 13,77 35,52 14,48 561,7 945,6    
 5,00 37,47 12,53 36,85 13,15 623,6 1293,6    
 10,00 42,00 8,00 198,67 51,33 4249,2 16368,6    
 15,00 45,00 5,00 217,49 32,51 5000,0 26668,3    
 25,00 48,57 1,43 467,85 32,15 11785,1 87301,0    
 35,00 49,94 0,06 492,57 7,43 12472,2 103477,1    
 45,00 49,49 0,51 497,20 2,80 12247,4 97983,6    
 55,00 47,11 2,89 483,03 16,97 11055,4 72068,5    
 60,00 45,00 5,00 230,28 19,72 5000,0 26668,3    
 65,00 42,00 8,00 217,49 32,51 4249,2 16368,6    
 70,00 37,47 12,53 198,67 51,33 3118,0 6468,1    
 71,00 36,23 13,77 36,85 13,15 561,7 945,6    
 72,00 34,80 15,20 35,52 14,48 489,9 627,2    
 73,00 33,06 16,94 33,93 16,07 402,8 348,6    
 74,00 30,73 19,27 31,90 18,10 286,7 125,8    
 75,00 25,00 25,00 27,87 22,13 0,0 0,0    
    3.335 415 73.282 458.760    
           
 area 2921 mm2 (sum Col. 4 - sum Col. 5)     
 z  25,1 mm  (sum Col. 6 divided by area)     
 I 458.760 mm4 (sum Col. 7)      
 S 18.284 mm3 (I divided by z)      
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CHECK values: 
 
Area 

From Wikipedia, we can seen that the area of an ellipse is: 

 

 (S not to be confused with Section Modulus)  

 

!!! (a=37,5 mm and b=25 mm) 

The numerical scheme results in an area of 2.921mm2, whereas the equation above results in an area of 2.945mm2. 

The accuracy is 99%. 

 

 

Bending inertia 

From Wikipedia, we can see that the bending inertia of an ellipse is: 

 

The numerical scheme results in a bending inertia of 458.760mm4 (accuracy of 99%). 

 

 

Section Modulus 

The equation for section modulus is: 

     

The numerical scheme results in a section modulus of 18.284mm3  (accuracy of 99%). 

 

Conclusion: the numerical scheme is accurate. 

 

 

 

CHECK calculations: 
 

Use equations 9 and 10 of this paper to determine the correction factors for chord and thickness:  

 

 and    

 

 

With   S =  18.284 mm3 

 I =  458.760 mm4 

 C = 75 mm 

 T =  50 mm 
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From this, it follows: α = 0,581  

    β = 1 

 

So the chord has to be corrected with a factor 0,581 and the thickness has to be corrected with a factor 1 to obtain the 

correct equations for this ellipse. Now the equations for section modulus and bending are: 

 

  
and 

  

 

Conclusion: the “rectangular” equations yield the same values as the numerical scheme. 

 

 

CHECK equations: 
 

We know that a=C/2 and that b=T/2. Substituting these values into the ellipse equations: 

 

 

 

 

 

 

 

Conclusion: the “rectangular” equations are numerically the same as the exact equations. 
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Appendix 3 Quick reference guide 
 

 

Determine bending inertia (I) and section modulus (S) 

numerically 

  C=chord 

  T=thickness 

   

                                                                   

   

   

   

 

 

 
 

 
Section modulus equation  Bending inertia equation 
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